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Abstract. Logarithmic perturbation theory (LPT) is developed and applied to quasinormal
modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially
convenient because summation over a complete set of unperturbed states is not required.
Attention is paid to potentials with exponential tails, and the example of a Pöschl–Teller potential
is briefly discussed. A numerical method is developed that handles the exponentially large
wavefunctions which appear in dealing with QNMs.

1. Introduction

1.1. Logarithmic perturbation theory

Eigenvalue problems of the type

Hφ = λφ (1.1)

occur in many branches of physics; hereλ may be related to the frequencyω by
λ = ω (Schr̈odinger equation), or byλ = ω2 (wave equation or Klein–Gordon equation).
Perturbation theory is useful for systems that depart slightly from an ideal solvable
configuration. Apart from the standard Rayleigh–Schrödinger perturbation theory (RSPT),
a useful alternative focuses not onφ itself, but on its logarithmic derivativef = φ′/φ.
Known as logarithmic perturbation theory (LPT) [1–4], this method is commonly applied to
one-dimensional (1D) bound state problems, especially the ground state. For excited states,
one either has to first factor out the zeros [5], or detour around them in the complex plane
[6]. LPT has also been developed for bound states in three dimensions [7]. LPT avoids
sums over intermediate states, and comparison with RSPT can lead to useful sum rules [8].

The bound states, or normal modes (NMs), are solutions withφ → 0 asx → ±∞.
Other boundary conditions are also important physically. Scattering states and the phase
shift can be handled by LPT using only on-shell information [9]. In this paper, we develop
LPT for wavefunctions that are outgoing at infinity—quasinormal modes (QNMs).

1.2. Quasinormal modes

In conservative systems, NMs are factorized solutions8(x, t) = e−iωtφ(x) with φ satisfying
an eigenvalue equation such as (1.1) and nodal boundary conditions atx → ±∞. The
counterparts in open systems are QNMs; these factorized solutions satisfy outgoing wave
boundary conditions atx →±∞, so that Imω ≡ −γ < 0.
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QNMs are important from many points of view. A laser is often discussed in terms
of its ‘modes’, i.e. the spectral lines with finite widthsγ , which are precisely these QNMs
[10]. Quantum-mechanical resonances are likewise central to scattering [11–14], and as
intermediate states in high-order transitions. Gravitational waves from the vicinity of a
black hole are likely to be detected in the next decade by facilities such as LIGO and
VIRGO [15]. The radial wavefunction describing the propagation of gravitational waves
in any angular momentum sector satisfies a Klein–Gordon equation with a potentialV (x)

[16, 17]. Theoretical studies [18, 19] show that, at least for an intermediate time domain,
the waves are dominated by a ringing signal, which is readily identified as the superposition
of QNMs [18–20]. If the relationship between the characteristics of the ringing signal (i.e.
the QNMs) and the spacetime curvature could be better understood, gravitational waves
have the prospect of becoming a novel astronomical probe. In these cases, the background
is a Schwarzschild metric plus perturbations (e.g. due to an accretion disc), so perturbative
treatments will be useful.

In the present context, three properties of QNMs should be emphasized. First, their
numerical determination is notoriously difficult. This is most simply seen in the ‘shooting’
algorithm: choose an arbitraryω, integrate from one end (sayx = 0 for a half-line problem
or a full-line problem with definite parity), identify the coefficient of the ‘wrong’ solution
at the other end (sayx → ∞), and varyω until this coefficient is zero. For NMs, the
exponentially large ‘wrong’ solution is readily identified. For QNMs, the ‘wrong’ solution,
which is O

(
e−2γ x

)
relative to the ‘right’ solution, is difficult to extract, especially whenγ is

large. The numerical difficulties make perturbation methods even more relevant than would
be the case for NMs.

Secondly, RSPT is inapplicable for two reasons. Its usual derivation relies on the
Hermiticity of the system, which is now lost. Moreover, because the QNMs are in general
not complete, one cannot sum over intermediate states. Even in circumstances where the
QNMs turn out to be complete [12, 13, 21–26], a scheme such as LPT would still have
definite advantages, because it makes no reference to the higher states with largeγ .

Thirdly, it is readily shown that any QNM can have at most one node on the realx-axis.
Except for the origin for the odd-parity sector of symmetric potentials, there is no reason
why any root of thecomplexequationφ(x) = 0 should lie on the realx-axis; those cases
that do are therefore ‘accidental’ in the sense that they occur only for specific values of
the parameters defining the potentialV (x)—in other words on a set of measure zero in
parameter space. Therefore the nodal problem which plagues LPT for excited NMs is here
generally absent.

1.3. Outline

Section 2 develops LPT for QNMs, and discusses the generalized norm that emerges as
a result. The most explicit general form for the second-order correction, together with an
illustrative example, are given in section 3, focusing on those cases where both the original
potential and the perturbation have finite support. The situation becomes slightly more
complicated if the potentials have tails, and the case of exponential tails is discussed in
section 4. A conclusion is given in section 5.

2. Perturbation theory

2.1. Formalism for the eigenvalue

We deal with the Klein–Gordon equation:[
∂2
x − V (x)+ ω2

]
φ(x) = 0. (2.1)



Logarithmic perturbation theory for quasinormal modes 3273

The Schr̈odinger equation is included by simply relabellingω2 7→ ω. The logarithmic
derivativef (x) = φ′(x)/φ(x) satisfies the Riccati equation

f ′(x)+ f 2(x)− V (x)+ ω2 = 0. (2.2)

We letf denote the logarithmic derivative corresponding to an eigenvalue, so that it satisfies
the two boundary conditionsf (x)→±iω asx →±∞. At a general frequency, however,
we can define similar functionsφ±(ω, x) and their logarithmic derivativesf±(ω, x) as
solutions to (2.1) and (2.2), but with each function satisfying onlyone boundary condition,
namelyf±(ω, x)→±iω asx →±∞. At an eigenvalue,f− = f+ = f .

Now let the potential be perturbed

V (x) = V0(x)+ µV1(x) (2.3)

whereµ is a formal small parameter. The eigenvalueω and the functionf are both written
in powers ofµ†:

ω = ω0+ µω1+ µ2ω2+ · · · (2.4)

f = f0+ µf1+ µ2f2+ · · · ≡ f0+ g (2.5)

wheref0, assumed known, satisfies the Riccati equation (2.2) with the potentialV0 and
frequencyω0.

Now divide the real line into three regions(−∞, L−), (L−, L+) and (L+,∞). If the
original potential and its perturbation both have finite support within the central interval,
then the asymptotic regions are trivial, and the simplest examples will be of this type.

First consider the central region, and put (2.4) and (2.5) into (2.2). Upon comparing
powers ofµ, one finds

f ′n + 2f0fn + 2ω0ωn = Vn (2.6)

for n = 1, 2, . . . , in which V1 is the perturbing potential in (2.3), andVn, n > 1, is a
shorthand for the following combination of lower-order quantities, to be called the effective
nth-order potential

Vn(x) = −
n−1∑
i=1

[fi(x) fn−i (x)+ ωiωn−i ]. (2.7)

Using the integrating factor exp
[
2
∫ x dy f0(y)

] = φ2
0(x), one gets from (2.6)

fn(x) φ
2
0(x)

∣∣L+
L−
=
∫ L+

L−
dx [Vn(x)− 2ω0ωn] φ

2
0(x). (2.8)

We now need to match the central solution to the two asymptotic regions. Assume that
the latter have been solved with outgoing wave boundary conditions at spatial infinity, and
denote the logarithmic derivatives to be matched as

D±(ω) = f±(ω, L±). (2.9)

Note thatD± will contain two types of changes from the unperturbed case. First, at fixedω,
the wavefunction when integrated inwards from±∞ will suffer changes because ofV1(x)

in the two asymptotic regions; these are expressed through

D±(ω) = D±0(ω)+ µD±1(ω)+ µ2D±2(ω)+ · · · . (2.10)

† It is a property of LPT that one need focus only on one state at a time. Therefore, a label for different QNMs
will, in general, be suppressed.
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Secondly, there will be changes because the value ofω itself shifts according to (2.4).
In particular, the exact logarithmic derivative isf±(ω, L±) = D±(ω), whereas the
corresponding unperturbed quantity isf0(L±) = D±0(ω0). Thus

g(L±) = f±(ω, L±)− f0(L±) = D±(ω)−D±0(ω0). (2.11)

Using (2.4) and (2.10) and developing the right-hand side of (2.11) in powers ofµ, we can
find thatfn in (2.8) should be matched to

fn(L±) = ωnD′±0(ω0)+1±n (2.12)

where1±n does not containωn; explicitly but in shorthand

11 = D1 12 = D2+ ω1D
′
1+ 1

2ω
2
1D
′′
0 (2.13)

etc. In the above, the subscripts± have been omitted from all quantities, and allDn on
the right are to be evaluated atω0. In short, one requires a knowledge of the perturbation
in the asymptotic region (Dn, n > 0), as well as a knowledge of the unperturbed problem
slightly away from the original frequency (derivatives ofD0).

Putting these into (2.8) and collecting terms involvingωn, one finds the central result

ωn = 〈φ0|Vn|φ0〉
2ω0〈φ0|φ0〉 (2.14)

in which we have introduced the suggestive notation

〈φ0|Vn|φ0〉 =
∫ L+

L−
dx Vn(x)φ

2
0(x)+

[−1+nφ2
0(L+)+1−nφ2

0(L−)
]

(2.15)

〈φ0|φ0〉 =
∫ L+

L−
dx φ2

0(x)+
1

2ω0

[
D′+0φ

2
0(L+)−D′−0φ

2
0(L−)

]
. (2.16)

This expresses thenth-order correction in quadrature in terms of lower-order quantities
(provided the asymptotic regions have been solved to give1±n andD′±0).

The division into three regions is arbitrary, and the whole expression (2.14) must
be independent ofL±. Moreover, the numerator and denominator must be separately
independent ofL±, because the numerator depends on the perturbation, whereas the
denominator relies only on the unperturbed system; an explicit proof can be constructed by
calculating∂〈φ0|φ0〉/∂L+, and then using (2.2).

Thus, in both (2.15) and (2.16), we can formally takeL± → ±∞ and write

〈φ0|Vn|φ0〉 =
∫ ∞
−∞

dx Vn(x) φ
2
0(x) (2.17)

〈φ0|φ0〉 =
∫ ∞
−∞

dx φ2
0(x). (2.18)

These formal expressions do not converge; equations (2.15) and (2.16) may be regarded as
ways of regularizing them. In section 4 we shall discuss various different ways of giving
meanings to these formal integrals.

Evidently, the numerator should be regarded as a generalized matrix element, and the
denominator should be regarded as a generalized norm. We now develop this interpretation.
The corrections to the eigenfunction will be given in section 2.3.
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2.2. Generalized norm and matrix element

For the simplest case whereV0(x) vanishes outside the interval(L−, L+), the solutions in
the two asymptotic regions are exactly e±iωx , andD±0(ω) = ±iω. The generalized norm
(2.16) simplifies to

〈φ0|φ0〉 =
∫ L+

L−
dx φ2

0(x)+
i

2ω0

[
φ2

0(L+)+ φ2
0(L−)

]
. (2.19)

In this form applicable to potentials without tails, the generalized norm has been introduced
previously both for the wave equation [21, 27], the Schrödinger equation [28] and the Klein–
Gordon equation [24], and its properties discussed. It has been shown to be equivalent to
another form first given by Zeldovich [29], which did not have the surface terms, but instead
required a process of regularization [11–13] which is less convenient for actual evaluation
(especially numerical evaluation). The present result, in the more general form (2.16), is
however, applicable to potentials with tails, and examples will be given in section 4.

Next we briefly describe the properties of this generalized norm, and argue why it
deserves to be so named.

First of all, suppose the system parameters can be tuned so that the leakage of the
wavefunction approaches zero (e.g. ifV0(x) contains a tall barrier on both sides). Then
L± can be chosen so thatφ0(L±) ≈ 0; the expression in (2.16) then contains only the
integral. Moreover, when the leakage is zero, the frequency is real, and the wavefunction
has a constant phase, which can be chosen to be real; thusφ2

0 = |φ0|2. The expression
(2.16) then reduces to the usual (real and positive-definite) norm for a NM. Because of this
property, and because it appears in the denominator in (2.14) to scale the wavefunction, it
is appropriate to call this quantity the generalized norm.

Nevertheless, it has some unusual properties. (i) It involvesφ2
0 rather than|φ0|2, and

is, in general, a complex quantity. (ii) It involves a surface term, though the value of the
entire expression is independent of the choice ofL±. Thus, it is not a genuine norm, and
the term is merely a shorthand for ‘a bilinear map that appears in the place of the norm in
perturbation formulae such as (2.14)’.

It is hardly surprising that perturbative results are expressed in the form of a matrix
element divided by a normalizing factor, as in (2.14), but it would not have been obvious
what the normalizing factor should be. The point is that for a QNM, the wavefunction
behaves asφ0(x) ≈ eiω0x ∝ eγ0x asx → ∞ andγ0 = −Imω0, so that an expression such
as (2.18) (and even more so for the analogous formula with|φ0|2) would be divergent. An
important result of the present paper is that we give a precise way of normalizing such
QNM wavefunctions.

We have already remarked that the generalized norm is not real, and neither is the
(diagonal) matrix element. Far from being a problem, this is necessary, in that the result
(2.14) gives the corrections to both the real part and the imaginary part of the frequency.
Thus, despite the formal similarity to the analogous problem for NMs, the present formalism
in fact contains twice the amount of information.

Some of the properties above, in particular the validity without regularization of the
simpler form (2.17), relies onVn behaving mildly at infinity. It is therefore appropriate
to demonstrate that if the perturbationV1 has finite support, then so does all the effective
potentialsVn generated via (2.7). Consider for simplicity only the asymptotic interval
(L+,∞). Now the exact logarithmic derivative is iω, whereas the unperturbed analogue is
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iω0. This then gives

g2 = −(ω − ω0)
2 = −

( ∞∑
i=1

µiωi

)2

. (2.20)

The nth-order term in the above expression then ensures thatVn in (2.7) vanishes exactly
in this region.

2.3. Wavefunction

To complete the iterative procedure, we also need the eigenfunctions. This can be readily
obtained by integrating (2.8) to an arbitrary point, and using (2.11) as the boundary condition,
which yields

fn(x) φ
2
0(x) = [ωnD

′
−0(ω0)+1−n]φ2

0(L−)+
∫ x

L−
dy [Vn(y)− 2ω0ωn]φ

2
0(y). (2.21)

One could write an alternate expression using the boundary condition atL+ and integrating
from the right. Consistency is guaranteed ifωn has been correctly evaluated by (2.14).

Thus we have in principle an order-by-order iteration scheme for the QNMs; namely,
use (2.14) to obtainω1, and (2.21) to getf1; this is then put into (2.7) to findV2, etc.

3. Explicit form of higher-order corrections and an example

3.1. Higher-order corrections

The perturbative formulae would be more useful if they could be written explicitly rather
than recursively. In general, thenth-order correction to the frequency must take the form
of an integral overV (x1) · · ·V (xn); moreover, the perturbing potential can only act if it is
‘sampled’ by the wavefunctionφ2

0(x). It will also turn out to be convenient to remove a
constant fromV1, and we are led to define

W(x) = [V1(x)− 2ω0ω1]φ2
0(x). (3.1)

The constant subtracted renders the integral ofW zero (see equation (2.14)).
Thus we expect to be able to write thenth-order correction in the form

ωn = 1

2ω0〈φ0|φ0〉
∫

dx1 · · ·dxn S
n∏
j=1

W(xj )9n(x1, . . . , xn) (3.2)

whereS ≡ θ(x1 − x2) · · · θ(xn−1 − xn) makes use of the symmetry among the coordinates
x1, . . . , xn to restrict the integration to one sector (θ is the unit step function), and the weight
function9n, constructed out ofφ0, scales as(φ2

0)
1−n.

We now try to write outω2 in essentially this form, and evaluate the weight function92.
For this purpose we consider the simpler case of a half line 0< x <∞, with the potentials
satisfyingV0(x) = V1(x) = 0 for x > a, and allφ(x = 0) = 0. (This may be regarded
as the odd-parity sector of a symmetric problem.) Thus, all the surface contributions atL−
are eliminated, while at the right-hand side we may takeL+ = a andD′+0 = i. Thus, the
generalized norm is

〈φ0|φ0〉 =
∫ a

0
dx φ2

0(x)+
i

2ω0
φ2

0(a). (3.3)
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By using (2.7) forV2, we can write the second-order matrix element as†

〈φ0|V2|φ0〉 = −
∫ a

0
dx φ−2

0 (x)
[
f1(x) φ

2
0(x)

]2− ω2
1

∫ a

0
dx φ2

0(x). (3.4)

Now from (2.21) we havef1(x) φ
2
0(x) =

∫ x
0 dy W(y). Putting this into (3.4), changing the

order of integration and also using (3.3) to simplify the second integral in (3.4) then leads
to

ω2 = 1

2ω0〈φ0|φ0〉
∫

dy dz SW(y)W(z)92(y, z)− ω2
1

2ω0
+ iω2

1

4ω2
0

φ2
0(a)

〈φ0|φ0〉 (3.5)

in which the weight function is found to be

92(y, z) = 92(y) = −2
∫ a

y

dx φ−2
0 (x). (3.6)

Thus, except for the last two terms in (3.5), which do not involve an integral, the second-
order correction has been cast in the form (3.2), which is the most explicit form possible
for an arbitrary perturbation.

3.2. Example

We now illustrate these formulae by a very simple example. Let the unperturbed system be
defined by a step

V0(x) = V0θ(b − x) b < a. (3.7)

The unperturbed eigenfunctions are

φ0(x) =
{
A sinqx x 6 b
A sinqb eiω0(x−b) x > b

(3.8)

where the condition of outgoing waves results in the eigenvalue equation forq:

q cotqb = i
√
q2+ V0 ≡ iω0. (3.9)

Hereω0 is the unperturbed frequency. There are of course many solutions to (3.9), and we
pay attention to any one of these.

The norm is readily evaluated by (3.3) to be

〈φ0|φ0〉 = A2b

2

(
1− sin 2qb

2qb
− sin2 qb tanqb

qb

)
. (3.10)

For any perturbationV1 with support on(0, a), the first-order shift is then

ω1 =
∫ b

0 dx sin2 qx V1(x)+
∫ b
a

dx sin2 qb e2iω0(x−b)V1(x)

ω0b
(
1− sin 2qb/2qb − sin2 qb tanqb/qb

) (3.11)

while the second-order correction is given by (3.5), with the weight function being

92(y) =
{ (

2/A2
)
(cotqb − cotqy)+ C[1− e2iω0(b−a)] y < b

C
(
e−2iω0y − e−2iω0a

)
y > b

(3.12)

whereC = i/
(
ω0A

2 sin2 qb
)
.

† For QNMs, the wavefunction does not have any nodes apart from the one atx = 0 imposed by the boundary
condition.
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Figure 1. (a) The trajectory of the lowest eigenvalue in the complex frequency plane asx0

is changed from 0.05 to 0.95, for fixedV0 = 100, b = 1, µ = 10, w = 0.1. The first- and
second-order perturbations are indicated by the broken curve and the full curve, respectively.
The triangle and the star mark the positions of the exact eigenvalues forx0 = 0.05 and 0.95,
respectively. The circles show the positions of the exact results for other values ofx0, and the
unperturbed eigenvalue is denoted by the square. (b) Same as (a) but for 1.05 6 x0 6 1.50.
The triangle and the star mark the positions of the exact eigenvalues forx0 = 1.05 and 1.50,
respectively.
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Figure 2. (a) The magnitude of the remaining error for the unperturbed value (full curve),
first-order perturbation (broken curve) and second-order perturbation (long-broken curve) versus
µ, for fixed V0 = 100, b = 1, w = 0.1 andx0 = 0.3. (b) Same as (a) but with x0 = 1.4.

These formulae then allow the corrections for any perturbationV1 to be obtained by
direct quadrature; more importantly, they exhibit how the perturbationV1 acts to shift the
complex eigenvalues.
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To be specific, let the perturbation be a bump of widthw centred at a positionx0:

V1(x) =
{

1 x0− 1
2w < x < x0+ 1

2w

0 otherwise.
(3.13)

Figure 1 shows the trajectory of the lowest eigenvalue,ω, in the complex frequency plane
as x0 is changed, for fixedV0 = 100, b = 1, µ = 10, w = 0.1 and (a) V1 lying
inside the interval(0, b), (b) V1 lying outside the interval(0, b); the exact results (circles),
first-order perturbation computed by (3.11) (broken curve) and second-order perturbation
computed by (3.5) (full curve) are shown together for comparison. Figure 2 shows the
magnitude of the remaining error for the unperturbed eigenvalue (full curve), first-order
perturbation (broken curve) and second-order perturbation (long-broken curve) versusµ,
for fixed V0 = 100, b = 1, w = 1 and (a) x0 = 0.3, (b) x0 = 1.4.

Although this example is extremely simple, it illustrates several interesting features.
First, the remaining error of thenth-order perturbation scales asµn+1, as expected. This is
the case even for the perturbation lying outside the interval(0, b) (figure 2(b)), in which
case the spectrum of QNMs isnot complete, and it is not possible to write the second-order
correction as a sum over intermediate QNMs; this result for the second-order correction is
testimony to the utility of LPT (as opposed to RSPT).

Comparison between the two cases in figures 2(a) and (b) also reveals that higher-order
corrections are more significant when the perturbation acts at a more distant position, where
|φ0|2 is large.

The behaviour in figure 1 is even more interesting, showing a spiral structure as the
positionx0 is changed. Although the perturbation is real and positive, the shift can have any
phase depending on where the perturbation acts—a situation totally different from NMs in
conservative systems. This behaviour is most readily understood in first-order perturbation
theory, for which the general result (2.14) can be written as

δω

δV (x)
= H(x) ≡ φ2

0(x)

〈φ0|φ0〉 (3.14)

whereH(x) can be read off from (3.8) and (3.10), which makes the spiral structure easy
to understand. The pattern of the shifts can therefore be very rich, and an example of the
results for a model astrophysical perturbation of a black hole has been given recently [30].

4. Potentials with tails

4.1. The P¨oschl–Teller potential

When dealing with QNMs, one recurring complexity is the asymptotic behaviourφ2
0(x) ∼

e2γ0|x|, making norms and matrix elements divergent. As far as LPT is concerned, this
complication occurs at two different levels. If the potential (and its perturbation) vanishes
outside a finite domain, then the expression (2.19) suffices to produce a finite expression
for the norm, whereas the matrix elements involve integrals only over finite domains. Such
simplifications also extend to potentials that vanish at infinity faster than any exponential.
However, when the potential (or its perturbation) decays as an exponential or slower (which
we shall refer to as a tail), then the evaluation of the norm and the matrix element will
require more attention.

In this section we illustrate the solution of these problems with the example of the
Pöschl–Teller (P-T) potential [31]

V (x) = V0 cosh−2(x/b). (4.1)
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From the point of view of LPT, the P-T potential is interesting because its large|x| behaviour
is exactly exponential:V (x) ∝ e−2x/b. The P-T potential, as one of a few exactly solvable
models, has been studied in depth, in part as a proxy for the Regge–Wheeler potential
[16, 18, 19] or the Zerilli potential [17], which describes linearized gravitational waves
propagating on a Schwarzschild background. These also have exponential tails (as the
tortoise coordinatex →−∞, i.e. towards the event horizon), and consequently their QNMs
share certain key properties with those of the P-T potential (e.g. a string of QNMs evenly
spaced ‘vertically’ in the complexω-plane,−Imω(j) ∝ (

j + 1
2

)
†). Therefore a better

understanding of the exponential tails may be relevant to gravitational waves as well.
The QNM eigenvalues of (4.1) are [31]

ω(j) = 1

b

[
±
√
V0b2− 1

4 − i
(
j + 1

2

)]
(4.2)

where we have assumed 4V0b
2 > 1. The positive (negative) parity sector corresponds to

even (odd)j . For the purpose of illustrating the LPT formalism, we shall focus on the
lowest state in each sector, i.e.j = 0 andj = 1.

Consider perturbations of the width, specifically

1

b
= 1+ µ. (4.3)

Because the model is exactly solvable for allb, we immediately obtain the frequencies in
powers ofµ:

ω0 =
√
V0− 1

4 −
(
j + 1

2

)
i ≡ σ − (j + 1

2

)
i

ω1 = 1

4σ
− (j + 1

2

)
i

(4.4)

etc, where for simplicity we only show the one eigenvalue of each pair with Reω > 0.
We now show how the shiftω1 can be obtained from LPT. From (4.1) and (4.3),

V0(x) = V0 cosh−2 x

V1(x) = −2V0x sinhx cosh−3 x.
(4.5)

We show three different ways of handling the divergent integrals (2.17) and (2.18). The
first two methods are specific to the P-T potential (or other potentials amenable to analytic
treatment), but these lead to the third method, which is numerical and can be applied to any
potential with exponential tails. The last method will be the one of general interest.

4.2. Analytic continuation

Consider for example thej = 0 state. The unperturbed eigenfunction is‡
φ0(x) = (coshx)iω j = 0 (4.6)

where it is understood thatω is to be evaluated at the unperturbed valueω = ω0 = σ − i/2.
Take the formal expression (2.18) and define, for anyω for which the integral converges,

N(ω) =
∫ ∞
−∞

dx φ2
0(x) (4.7)

† The mode index will be indicated in( ), but will be suppressed where no confusion arises.
‡ This expression applies only forω equal to the eigenvalue; otherwise there is another term with an incoming
wave, whose coefficient vanishes at the eigenvalue. The omission of this term does not affect the argument based
on analytic continuation.
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whereφ0 is given by (4.6). The integralN(ω) is well defined for Imω > 0, in which
domain it is evaluated in terms of the beta functionB to be

N(ω) = B( 1
2,−iω

)
. (4.8)

By analytic continuation, this applies to Imω < 0 as well, and the norm of thej = 0 state
is thenB

(
1
2,− 1

2 − iσ
)
. Likewise, the wavefunction for thej = 1 state is

φ0(x) = tanhx(coshx)iω j = 1. (4.9)

The same analytic continuation gives the norm asB
(

3
2,− 3

2 − iσ
)
.

The matrix element〈φ0|V1|φ0〉 for the j = 0 state is

−2V0

∫ ∞
−∞

dx x sinhx(coshx)2iω−3 = −
√
πV00(1− iω)

(1− iω)0
(

3
2 − iω

) (4.10)

which is convergent even atω = ω0 = σ − i/2, and readily evaluated to be

〈φ0|V1|φ0〉 = −
√
πV00

(
1
2 − iσ

)(
1
2 − iσ

)
0(1− iσ)

.

Thus the first-order shift is obtained from (4.8) and (4.10) to be

ω1 = 1

4σ
− 1

2
i

in agreement with (4.4).
Similarly, for thej = 1 state, the matrix element is

−2V0

∫ ∞
−∞

dx x sinh3 x(coshx)2iω−5 = V0

iω − 2

[
B
(

3
2, 1− iω

)+ π0(1− iω)

(1− iω)0
(

3
2 − iω

)] (4.11)

where the integral is evaluated for Imω > 0. Analytic continuation to the eigenvalue is
required, and gives

〈φ0|V1|φ0〉 = V0

iσ − 1
2

[
B
(

3
2,− 1

2 − iσ
)− √π0(− 1

2 − iσ
)(

1
2 + iσ

)
0(−iσ)

]
.

The first-order shift of thej = 1 state is again in agreement with (4.4).
Analytic continuation, though convenient, applies only when the integrals can be

evaluated exactly. We therefore present other methods, including numerical evaluation
of the integrals.

4.3. Regularization

The second method does not make use of the formal expression (2.18), but utilizes the
original expression (2.16) with the regulating parameters−L− = L+ = L. The integral
involved is, for thej = 0 state,∫ L

−L
dx φ2

0(x) =
∫ tanh2L

0
dz z−1/2(1− z)−iω0−1

= 2F
(

1
2, 1+ iω0; 3

2; tanh2L
)

tanhL

= B( 1
2,−iω0

)− iφ2
0(L)

ω0
F
(
1, 1

2 − iω0; 1− iω0; cosh−2L
)

tanhL (4.12)

where F(a, b; c; x) is the hypergeometric function, and the last step follows from its
transformation properties. This then gives

〈φ0|φ0〉 = B( 1
2,−iω0)− φ

2
0(L)

ω0
K(L) (4.13)
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where

K(L) = D′+ − iF
(
1, 1

2 − iω0; 1− iω0; cosh−2L
)

tanhL. (4.14)

Now it is easily shown, using even the crudest approximationD+ = iω0, thatK(L) =
O
(
e−2L

)
, whereasφ2

0(L) = O
(
eL
)
. Thus the second term in (4.13) (which is guaranteed to

be independent ofL) is shown to be zero when evaluated atL → ∞. The norm of the
j = 1 state can also be recovered in this manner, though one needs a better approximation
for D+ in this case; a way to obtain these better approximations is given below.

The matrix elements are likewise regulated, provided we know the logarithmic
derivativesD±(ω) when the wavefunction is integrated fromx → ±∞. These are not
available for a general potential. Another way to regulate the matrix elements is to integrate
along a contour in complexx plane, e.g. along the pathx = ueiθ , u real andθ fixed. The
matrix element becomes

〈φ0|V0|φ0〉 =
∫ ∞
−∞

du eiθφ2
0

(
ueiθ

)
V0
(
ueiθ

)
. (4.15)

It is easily seen thatφ2
0

(
ueiθ

)
decays exponentially for sufficiently largeθ and hence the

integral along the rotated contour converges [13]. As an example, we compute the matrix
element numerically forj = 1 state using (4.15) withθ = 60◦. The result agrees with
the analytic value given by (4.11). In the case of P-T potential, the logarithmic derivatives
D±(ω) are available analytically. Hence the matrix element can also be evaluated by (2.15),
but since this result is highly special, we shall not exhibit it here. Instead, we go on to a
numerical scheme applicable to all potentials with exponential tails.

4.4. Numerical evaluation and Born series

For any system, provided the unperturbed wavefunctionφ0(x) is known, the shifts are in
principle given by (2.15) and (2.16). These involve (i) finite integrals fromL− = −L to
L+ = L, which can be handled numerically in the usual way and (ii) surface contributions
involving D±. The latter contain all the information from the tails of the potential.
The lowest approximationD±(ω) ≈ ±iω is, in general, not accurate enough, because
it multiplies φ2

0(L) ∼ e2γ0L.
A general, yet simple way to obtain a better approximation for|x| > L is to use the

Born approximation. HereV will stand for any potential; by applying the method sketched
below, we can find the logarithmic derivative of eitherV0 or V0+V1, and hence obtain the
quantitiesD±. If V (x) ∝ e−αx and the Born approximation is carried tomth order, then
the remaining error would go asV (x)m+1 ∝ e−(m+1)αx , which will be sufficiently accurate
for dealing with any unperturbed state withγ0 < (m+ 1)α.

The Born approximation is particularly easy to implement for a potential that goes as
an exponential. For simplicity we deal with the tail atx = L only. Let

V (x) = V0

∑
k

cke
−αkx (4.16)

where by conventionα1 < α2 < · · · . The P-T potential is of this form, whereαk = 2k/b,
andck = (−1)k+14k.

By iterating (2.2) in powers ofV , one finds

f0(x) = iω

f1(x) = V0

∑
k

ck(αk − 2iω)−1e−αkx

f2(x) = V0

∑
k,k′

ckck′(αk − 2iω)−1(αk′ − 2iω)−1(αk + αk′ − 2iω)−1e−(αk+αk′ )x .

(4.17)
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etc. (Here the subscripts onf denote the order of the Born approximation, not LPT.)
Higher-order terms can be generated readily by algebraic software. All the sums can be
terminated at somekmax if only accuracy up to O

(
e−βx

)
is required for some finiteβ.

The poles in (4.17) exist only in the Born approximation, but not in the exact solution†.
Nevertheless, equation (4.17) makes it clear that even exponentially small potentials can
have a significant effect when−Imω is large, and this is the reason behind the string of
QNMs−Im 4Mω ≈ (k + 1

2

)
for a Schwarzschild black hole of massM [32].

We have implemented this scheme for the P-T potential, indeed for any potential that
can be expressed in the form (4.16) withαk = kα. Again for simplicity we deal with the
situation only on one side, say for the tail asx → +∞. For this particular form ofαk
spaced evenly ink, the Klein–Gordon equation can be solved easily by substituting

φ(x) = eiωx
∞∑
k=0

dk e−kαx (4.18)

into (2.1). One has

d0 = 1

dk = V0

αk(αk − 2iω)

k−1∑
m=0

dmck−m k > 1
(4.19)

and

f (x) =
[ ∞∑
k=0

(iω − αk)dk e−αkx
]( ∞∑

k=0

dk e−αkx
)−1

. (4.20)

In this example, we have summed four terms withα = 2/b = 2, and consequently the
remaining error in the logarithmic derivative calculated is O

(
e−10x

)
. Incidentally, this

method, when evaluated atx = L, gives accurate expression forD+(ω) as needed in
section 4.3.

We have used this method to evaluate both the matrix element (2.15) and the norm
(2.16), takingL+ = L = 5. (In this example, only the positive half line is needed due to
the symmetry of the potential.) To be precise, the integral over the finite domain(0, L)
is evaluated numerically, while the surface term is evaluated by the Born series (4.20).
The result forω1 agrees accurately with the result obtained from the two methods sketched
earlier.

However, there is still a numerical problem. Take the norm in thej = 1 state as an
example. Numerical evaluation gives for the two terms in (2.15)

integral= 187 374.578+ 143 350.152i

surface term= −187 374.961− 143 350.431i

so that there is a loss of six significant digits when the two terms are combined. The cause
of the problem, as before, is the exponential growth of the wavefunctionφ0(x) ≈ Aeiω0x ,
so that the asymptoticL dependence of the two terms are respectively±(A2/2iω0

)
e2iω0L,

whereA = 1/2iω0 for the wavefunctionφ0(x) normalized as in (4.9). A related difficulty
is that the integrand is large and oscillating, which limits the accuracy of evaluating the
integral. However, these difficulties are readily remedied if we subtractA2e2iω0x from the

† In deriving the Born approximation, one has in effect first takenV0 → 0, then secondly considered say
αk − 2iω→ 0 in the resultant expression (4.17). This order of the limits implies that the result is only valid for
V0e−αkx � |αk − 2iω|. On the other hand, the exact solution at the position in question would refer to taking the
limit αk − 2iω→ 0 while keepingV0 finite. In this case, there would be no pole.
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integrand, and add the corresponding term
(
A2/2iω0

)(
e2iω0L− 1

)
to the surface term. Then

in this example one finds

modified integral= −22.937 0946+ 29.121 5523i

modified surface term= 22.554 1253− 29.401 0213i

and there is only a loss of two significant digits when the two terms are combined. This
technique can be further refined by removing subasymptotic terms as well. This method
does not rely on any property of the P-T potential other than the exponential tails.

The numerical difficulty associated with the exponential growth of the QNM
wavefunction is exactly the same as the difficulty in the ‘shooting’ algorithm discussed
in section 1.2. This same difficulty, in different guises, always besets numerical solutions
of QNM problems. Here we have developed an effective method within the realm of
perturbation theory—but otherwise applicable toany system with exponential tails—to
tame the problem. The class of problems with exponential tails is sufficiently wide for
this method to be of interest, especially since there is a dearth of other effective methods.
With this numerical technique to handle exponential tails, LPT is completely formulated for
potentials either without tails, or with exponential tails.

5. Conclusion

In this paper we have formulated LPT for QNMs. For systems without tails, the formalism
is no more complicated than for NMs. In fact, there are several advantages: the absence of
nodes allows simple application toall states, not just the ground state, and the possibility
that QNMs may not be complete makes alternative methods (e.g. generalization of RSPT)
less useful. The explicit form of the first-order shift is given, as well as the most general
form of the second-order shift for an arbitrary perturbation. When there is a tail that can be
expressed as a sum of exponentials, a method is developed, based on the Born series, that
reduces the calculation to the evaluation of integrals, the exponentially large nature of which
can be handled by subtracting off the leading asymptotic terms. While this is somewhat
involved, it is to be stressed that for this caseno other methods apply in general, not even
brute-force numerical integration, on account of the need to extract an exponentially small
‘wrong’ solution. Thus the technique is likely to be useful. Indeed, this technique has
already been employed to deal with model perturbation of a black hole [30].

Finally, the generalized norm plays a central role, and in fact has a significance beyond
perturbation theory. It emerges naturally in the derivation, where the integrating factor in
(2.8) isφ2

0 and not|φ0|2. However, it is possible to express this same idea in another way,
which is possibly more natural and familiar [33]. The idea is to write these open systems
in terms of a non-Hermitian Hamiltonian [25, 26] and adopt a bi-orthogonal basis [34]
which includes a set of left-eigenfunctionsφ dual to the right-eigenfunctionsφ. Then our
generalized norm〈φ|φ〉 is exactly the same as(φ, φ), where the latter is theconventional
inner product which is conjugate linear in the bra and linear in the ket. This development
will be reported elsewhere [35].
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